

TEN TIPS FOR

WORKING WITH
CODERS

U n d e r s t a n d i n g h o w t o

s u c c e s s f u l l y m a n a g e a

s o f t w a r e d e v e l o p m e n t

p r o j e c t

B Y B O B D A V I S

A I D Y N A M I S M . C O M

Ten Tips for
Working with

Coders

Understanding how to successfully manage a software development project

By Bob Davis
 AIDynamis.com

10/10/2017

Table of Contents

1. Find developers you can trust

2. Clarity is Power - Learn to clearly express your idea and build a prototype

3. Embrace the Dynamic Nature of Software Development

4. Welcome to Agile Development

5. Establish clear weekly goals - Intro to Scrum

6. Daily Standup

7. Sprint Retrospective

8. Asynchronous Communication Methods

9. Be Consistent

10.Expect Excellent Code Quality

1

Ten Tips for Working with
Coders

With the onset of globalization more and more software development companies overseas
are completing more and more projects successfully. However, the land of software
development is also fraught with disaster stories of projects gone wrong with missed
deadlines and costs soaring over budget. One entrepreneur worked with a software
development company for 3 months spending $11k in services, without producing a single
line of code! The whole time was spent going back and forth talking about the brand of the
company, what they wanted the user flow to be even though he already had the layout
mapped out.

Most software development companies are well meaning and don’t intend for this type of
fiasco to occur. It often stems from poor communication and misguided direction, but there’s
hope! Below are a ten best practices to ensure your software project is a success.

Find Developers you can TRUST

As Stephen Covey highlights in his book, “Speed of Trust,” business always goes better and
faster when you have confidence others will deliver and follow through on their word. Of
course, the first component of this is finding a company with integrity. Not only is this essential
for believing what they tell you, but is important when they tell you something you don’t want
to hear. For example, your next favorite feature will take weeks instead of days to build as
you thought. The magic of software is that very complex tasks can appear very simple
because the end result just happens in the blink of an eye. For example, Google's PageRank
algorithm displays the top webpages almost instantly, but it has taken thousands of
people-hours of development time. Yet the result is available at
your fingertips at any moment throughout the day and appears as
a simple list of websites.

The second component of trust which is often overlooked is the
value of competence. The team you’re working with could have
the highest degree of integrity and wouldn’t lie if their job
depended on it, but if they aren’t capable, then you could still end
up being left hanging. The world of software is rapidly changing,
and there is always a shiny new piece of code that developers
want to learn and use. It is very valuable to stay up on the latest
trends, but if a developer hasn’t completed a very similar project
in the past, there will necessarily be some time spent figuring out
how to piece together the right tools. Finding a development team
with the right skill set is very valuable to reducing the overall time
it takes to build a mobile or web app. This goes beyond just

2

having experience with a particular programming language but rather having worked on
similar projects with the same toolset.

Finding a development team who has your best interest in mind, a great work ethic, coding
quickly while maintaining optimal quality can make or break a project. A lot of time and money
can be saved by identifying the minimum feature set or removing non-essential items in the
first build. However, without significant technical knowledge, it can be difficult to undercover
those potential time savers. Therefore, having your own trusted technical advisor can be very
advantageous. Someone who is able and willing to work closely with the development to
make hundreds of those micro-decisions such as what to include within each feature to
balance speed and quality.

Clarity is Power

Cat: Where are you going?
Alice: Which way should I go?
Cat: That depends on where you are going.
Alice: I don’t know.
Cat: Then it doesn’t matter which way you go.”

Many people working on software development teams’ end up feeling like Alice lost in
wonderland. The sky’s the limit when it comes to what is possible to build with software
making it very difficult to explain exactly what you want. Most people have a clear picture in
their mind of what they want to create but lack the words to express those ideas to the people
who can bring their vision to life.

This is because the ideas are very complex and abstract making it difficult to create. Imagine
trying to describe to an architect how you want to build your house without drawing anything.
How difficult would that be?

Furthermore, imagine beginning construction without any blueprint and just making it up as
you go? Well-meaning people with great ideas for software can see their dreams pushed off
by meetings and endless abstract discussions about features before any code is written.

The corollary to a building architectural blueprint in software is
a mockup and requirements specification. A good mockup
contains an outline of what will be on each screen and tell a
story of what each users experience will be. For example, a
user story for bestbuy.com could be:

1. Enter homepage: bestbuy.com
2. Type: Big screen TV into the search box
3. Browse through a list of available TVs
4. Select 3 to compare the features
5. View each in detail
6. Purchase one TV

3

This is a high-level overview of a user story, and in reality, each and every screen should be
listed. For the mockup, you would then layout what information is needed on each screen
everything from the sale item details to what should be displayed in the search results or
comparison page. Not to mention, what other ads, banners or links should be included and
what information do you want to collect from the user. As you can see, this can get quite
complex very quickly.

The power of a mockup is that it takes a nebulous idea from one’s mind and puts it in the
concrete form on “paper” for all to see. Once this is done, you can actually interact with the
mockup and see if the flow makes sense and discover any details that were left out.

Like Google’s PageRank, many apps have a lot going on behind the scenes which are not
captured by a good mockup. Instead, this is outlined through the technical requirements
specification. These specs outline how the software works behind the scenes, often referred
to as the “backend” opposed to the “frontend” which covers the items that can be seen and
interacted with directly by the user. To continue with the construction analogy, the backend is
analogous to the foundation, framing, roof, etc. A good backend design is like a proper
structural engineering design to ensure the support beams are strong enough to hold up each
floor and stand up to inclement weather. Just like no one wants a building to fall, it’s important
you find excellent backend engineer(s) to keep your app up and running. Beyond a detailed
mockup outlining how the app should look and feel, a detailed requirements specification is
helpful to ensure the app won’t fall apart or be plagued with errors when all complete.

In short, the more prepared you are with a detailed plan of what you want to build before you
meet with a software developer(s) the more likely your project will be completed on time and
within budget.

Embrace the Dynamic Nature of Software Development

One difference between constructing a house and creating software is the ability to make
changes after the initial setup is completed. After a building is finished, it is very difficult to

change the place of the kitchen or
bedroom. With software, the parts which
are difficult to change are highly
dependent on how it is architected and
which parts of the code are dependent on
other parts. The more dependencies, the
more difficult it can be to modify the code.
Nonetheless, the code is more dynamic
than a physical building and therefore
allows for more flexibility. At risk of
overusing the analogy, with software after
you complete the kitchen you could easily
add a bathroom or extra bedroom without
much overhead.

4

The main point is to recognize that things change and you will learn more as progress is
made. Therefore hold on loosely to the overall timeline and deliverables and focus on the
tactical week by week how can the team most effectively march toward the end goal? What
are the features that you can put off to focus on obtaining a fully functional prototype as fast
as possible? You always want to be asking, what is faster to complete and what is the easiest
way for the developer to get the job done.

Welcome to Agile Development

If you’ve spent much time searching for what
you need to know when working with
software developers, you’ve probably heard
of the project management style known as
Agile Development. It took the software
industry by storm in the early 2000s, allowing
teams to break away from a very detailed
plan and work more on an ad-hoc basis.
Eventually, they even put together an Agile
Manifesto (agilemanifesto.org).

Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation

Responding to change over following a plan
That is, while there is value in the items on

the right, we value the items on the left more.

As highlighted in the prior section having a clear vision and plan for what you want to
accomplish is essential to ensure you get there. However, in the 1990s, the software
development industry went a little overboard attempting to create very detailed and precise
project timelines. A lot of time was consumed trying to plan out every attribute of a large
multi-year project. It became very difficult to hit deadlines and meet specific requirements that
were six months out. Oftentimes, more time was spent on the planning phase and on
documentation than actually writing code.

Hence the birth of Agile development, which attempted to add more flexibility to the process.
There is no “silver bullet, ” but an important balance should be struck between spelling out a
clear vision and getting your hands on working software which can be improved upon as you
go. There are many opinions about how to manage a project and implement an agile
environment, so one key to working with a development company is learning what works well
for them and what systems they have in place to ensure progress is made. One popular agile

5

implementation is the Scrum, which consists of sprint planning, sprint review, and daily
standups.

Establish clear weekly goals

Although the origins of the Scrum process, mentioned above, are not clear, the first book was
published in 2001, called Agile Software Development Scrum Series. The Scrum outlined a
framework or process to help drive projects forward and ensure the right things are prioritized
and everything is accomplished in a timely manner.

One of the key components of this process is the Sprint Planning meeting. This meeting
occurs every one to four weeks, depending on the organization, and biweekly meetings are
the most common timeframe. The work to be completed each week is broken into “User
Stories” which explain what the code will do from the user’s perspective and are the specific
deliverables that the developer needs to complete at the end of the sprint. The meeting
workflow goes as follows.

Sprint Planning Overview

● The Product Manager (or Scrum Master) will review the list of prior user stories (aka
tasks) to be completed and prioritize them

● Developers will review the list and individually estimate how long each user story will
take to complete and then reach a consensus

○ This is often done in terms of complexity (aka difficulty) rather than specific
hours

○ Then as the development process progresses, the number of complexity points
completed per sprint can be measured and refined over time

● Everyone meets to review this list, agree on the contents and priority, thus solidifying
the plan for the upcoming sprint

○ This provides a great opportunity for any questions to be answered
○ It is also an excellent time to level set expectations and ensure progress is

being made fast enough to hit the long-term goals
● Meeting notes are sent out to summarize what was agreed on and document the plan

6

https://www.amazon.com/Agile-Software-Development-Scrum-Series/dp/0130676349

One benefit is clear visibility to all the stakeholders about what is being worked on and what
can be accomplished over the given timeframe. It also provides clear, realistic goals for the
developers to pursue and an easy way to hold them accountable. A best practice is to
determine what the consequences will be if all of the user stories are not completed by this
timeframe. If people are not delivering on what they say they will accomplish, you need a plan
of action to ensure that any incorrect systems or behavior is remedied as fast as possible. It
can be devastating to a project if a habit of not completing tasks in the specified timeframe is
formed.

Along those lines having a properly prioritized list of additional tasks to complete (often
referred to as a “backlog”) can be valuable to make it clear what to work on if the items for the
sprint are finished ahead of time.

There are many software tools available to help keep track of the project status and the list of
items to be completed. A few of the most popular ones are Atlassian’s JIRA, ProjectTracker
or Github Issues (see http://blog.capterra.com/agile-project-management-software/ for more
options). They each have their own pros and cons, so it is often best to go with whichever the
software development company prefers.

Daily Standup

As in many areas in life, rarely will a
project get completed on its own without
outside help. You need to water your
plants every day, or they won’t grow.
Since things are frequently changing and
many small issues can arise while
working on a software project, it is very
important to have open pathways of
communication to answer any questions
that come up. That is where the daily
standup comes in. The idea is to have a
regular review of the progress and
provide a time to answer any questions
which arise. It should be short, simple
and to the point:

Standup Meeting Agenda
 Each person highlights:

1. What they accomplished yesterday?
2. What are they going to tackle today?
3. Are there any questions or things holding them back from making progress?

The meeting should take no more than 5 minutes and have no more than 5 people in
attendance. Anything larger and the work scope is too large, so people often don’t need to
hear about what everyone in the room is doing, so they lose interest and become

7

http://blog.capterra.com/agile-project-management-software/

unmotivated. It will take significant discipline to build a habit of having a short meeting, so you
might want to start by using a timer and setting it to 1 minute for each person for the first
couple of weeks until a habit is formed.

This can also be a good time to ask if the developers are on track to accomplish all the tasks
(user stories) for this sprint. If not, it can be advantageous to discuss ahead of time what to do
if they fall behind. Which items can be dropped? Can we pull in more resources to ensure we
meet the deadlines, etc.?

Sprint Retrospective

If you’ve recorded a clear list of user stories to be completed each sprint and met daily to
track progress, then the retrospective will likely go very smooth. It is a time to review the work
previously accomplished and ask, did we get done all the items planned for this sprint? If not,
why not? Then talk about what went well and what can be improved upon. It is always good
to highlight the positive things first, so each person should come to the meeting with at least
2-3 things that went well that week. If there is anything that could be changed this is a good
time to bring it up. Perhaps someone wasn’t responsive, or some areas turned out to be more
challenging than expected, etc. The important part is to ask, what will we do differently this

time to improve in this area? Is there
something we need to stop or start
doing? What worked well that we should
continue doing?

The retrospective meeting can usually
be completed back to back with the
sprint planning meeting or at least within
24 hours of each other, so the learning
easily transfers to the next sprint.

It can also be useful to have a project
overview meeting every one to three
months. This is where the long-term
goals of the project can be reviewed,

and the pace can be assessed to ensure the team is on track to reach those goals. Also, it
can be helpful to take a step back from the tactical sprint planning process and ensure the
day-to-day details align with the big picture. This meeting could be an extended sprint
planning meeting or an additional meeting on its own.

Asynchronous Communication Methods

In addition to these daily meetings, it can be very useful to have an easy way to communicate
and ask questions about each user story or technical requirements without requiring a
meeting. If the only time, the team speaks with each other is in a meeting, then they become
long and laborious. Email is the defacto choice for communication but how many people like
their inbox being overloaded? It can be preferable to have a tracking system which provides
more context for each user story but integrates with your current communication system. For

8

example, PivotalTracker can send you a slack
message or an email if your name is
mentioned within the list. Slack is another
popular choice for ways to provide easy
communication back and forth. A separate
place for discussions also makes it easy to
search through old conversations.

Having a way to communicate that doesn’t
clutter up your inbox is really helpful to ensure
work is progressing and any roadblocks are
being eliminated quickly. Without an easy,
effective way to talk to someone, small
problems can build up into tantamount issues
that carry on for weeks or months.

Be Consistent

Every new idea evolves with time, especially as you see it working in real life. The simple act
of using the software can lead you to discover many new insights about the way it should
work. For example, a button here or too many options to fill out there or the address should
be pre-populated when filling out a form, etc. It’s nearly impossible to anticipate all these
minute details hence the value of iterating quickly and operating in short sprints so you can
test out new features as soon as possible.

Nonetheless, this is not an excuse to
constantly change your mind about what you
want to build. There are some matters of
preference such as the color of buttons or
the layout on a screen that can feel really
important at the time but can drastically slow
down development if they keep changing.
Remember that done is better than perfect
and each change costs time and money, no
matter how small. Therefore, if it’s good
enough then leave it for now and feel free to
make a note of it so you can come back to it
later.

In general, it’s best to focus on the large items first, like what content should be displayed on
each page and what the layout of the content should be, before worrying about the finer
details. Start big and then zoom into the details as work progresses.

9

Expect Excellent Code Quality

Not all code is created equal. Cutting corners, in the beginning, can lead to compounding
problems in the future. When just interacting with the software or using it at first, it can be
difficult to tell how good of quality the code is behind the scenes. It’s important to find
experienced developers who appreciate some of the best-known methods in the industry.
Here are a few concepts to ask your team about and expect them to deliver on:

Test Coverage - If you ever worked with buggy software you see the result of poor test
coverage. The beauty of code is that each part can be tested individually before they are put
together, much like the parts of a car are tested separately. There are various levels of testing
depending on the scope ranging from unit tests, integration tests to functional tests. The
important thing is to ask your developer, how high is the test coverage? In other words, what
percentage of the lines of code are covered by automated tests? They should tell you a
number between 0% and 100%. The costs of writing more tests can increase significantly
going from 95% to 100%, but in general, 85% to 95% is a solid target.

Code Linting - Although a piece of code might function well and get the job done, if no one
else can read it then you’ll suffer tremendously in the long run. It will be more difficult to
debug (fix problems when they come up) and bring on other developers. Similar to checking
for Test Coverage there are libraries which will check how well the code format conforms to
language specific standards.

10

Code Reviews - Another way to improve the quality of the code is to ensure that no piece of
code is committed without a peer review. Code is written cleaner when the developer knows
someone else will be examining it. Also, it helps answer any questions and ensure other
people understand what a piece of code does besides the one person who wrote it. The
person paying for the software can hold people to this standard and ensure it’s followed.

Continuous Integration - Although not required, it can be very beneficial to set up an
automated testing and delivery system known as continuous integration. These frameworks
will automatically test, build and release the code to the server as soon as the developer
commits it to the code repository (such as Github or BitBucket). This saves a lot of developer
time debugging why their code works on their own machine but not on the server. Also, it
helps ensure the tests are run after each change. Tests aren’t helpful if they don’t get run.

Technical Debt - Writing code can be like storing stuff in your garage. Each time a new toy is
purchased, it gets placed in the garage somewhere, and some are taken out and put back in.
Over time the garage can get filled with stuff with no more room for a vehicle! Technical debt
is when code gets disorganized and cluttered resulting in a lot of overhead to get anything
done. It’s like trying to find that set of china buried behind all the boxes in the garage. Just like
with a garage, you can let the junk pile up for months or years and then spend weeks clearing
it out, or it can be cleaned little by little each week and organized as new stuff comes in. As
more code is written more time needs to be dedicated to cleaning up the old code and
organizing it otherwise someday those looking to add new features might get lost in the
tangled web of bad code. In short, give developers time to organize and clean out that old
pesky technical debt through activities like refactoring (think to organize a messy closet),
rewriting and adding tests. There might not be any visible changes on the frontend, but in the
long run, it will pay dividends!

In summary, it is easy to get lost in the wild west of software development, so it is invaluable
to have solid principles to guide you along the way. Remember to provide a clear vision, be
flexible, stick to proven methodologies and don’t settle for the stinky code. If this territory feels
a bit overwhelming, it can be helpful to bring in a third party with proven development skills to
act as an advisor through the process.

Best of luck on your next project!

11

